Discovering a Higgs decaying to 4 jets in SUSY Cascade decays

Jing Shao Syracuse University

Based on arXiv: 1012.1316 in collaboration with Bellazzini, Csaki and Hubisz

SUSY 2011, Aug 28, 2011

Outline

- Why is Higgs still missing?
- How to deal with Higgs decaying to jets?
- How can new physics help?
- Case study
- Conclusions

Summarize the result

- Higgs can decay 4 light jets -- suffer from large SM Bkg
- jet substructure + new physics channels can enhance the discovery
- 14TeV LHC -- 10-30fb^-1

Why is Higgs still missing?

- LEP
 - mh>115 GeV
 - h-> 4c,4g or other light jets
- Tevatron & LHC
 - no evidence yet
 - for SM Higgs, 115-145GeV

Decay Channel	Limit	
$h \to b\overline{b}$ or $\tau\overline{\tau}$	115 GeV	
$h \rightarrow jj$	113 GeV	
$h \rightarrow WW^* \text{ or } ZZ^*$	110 GeV	
$h ightarrow \gamma \gamma$	117 GeV	
h o E	114 GeV	
$h \rightarrow AA \rightarrow 4b$	110 GeV	
h ightarrow AA ightarrow 4 au, 4c, 4g	86 GeV	
$h \rightarrow \text{anything}$	82 GeV	

Nonstandard Higgs decay

- H decay to light jets: H-> 4jets
- New scalars couple to Higgs
 - Extended Higgs sector: NMSSM, ...
 - Buried/Charming Higgs: SU(3)-> SU(2),
 PGB: h, η

Bellazzini, Csaki, Falkowski, Weiler (2009, 2010)

Dermisek, Gunion (2005)

Luty, Phalen, Pierce (2010)

Carpenter, Kaplan, Rhee (2008)

Cripaios, Pomarol, Riva, Serra (2009)

.....

How should we do?

- Normally form jets and combine them --> invariant mass
- Cluster a "fat" jet, then check the cluster sequence
 - mimic the physical process of showering

 kinematic cuts iteratively, determine whether from decay or QCD radiation

• jet mass/kinematics/jet shape

sequential clustering:

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$

$$Kt(p=1)$$
, anti- $Kt(p=-1)$, $C/A(p=0)$

Implementations

Many ways developed

BDRS, "Y-splitter", "Top-tagging" Jet grooming: Pruning, Trimming Jet shapes Brooijmans(2008), Kaplan etal (2008), Thaler, Wang(2008), Ellis, Vermilion, Walsh(2009), Krohn, Thaler, Wang(2009), Almeida etal (2008), Kim(2010), Thaler & Van Tilberg (2010)

- Butterworth, Davison, Rubin and Salam (BDRS) 0802.2470
 Search SM Higgs to bb
 - mass drop: m(subjet)
 m(jet); decay kinematics: Kt dist > y m(jet)
 - Filtering: recluster with smaller R, keep hardest 3 subjets
- Modified procedure Higgs -> 4g, need 100fb^-1 @14TeV LHC

Chen, Nojiri, Sreethawong (2010) Falkowski, Krohn, Shelton, Thalapillil, Wang (2010)

Reduction of Bkg with new physics signals

- Nonstandard Higgs decay implies new physics
- New colored exotics (> TeV) pair produced, e.g. gluino-gluino, squark-gluino, etal
- Cascade decay

(assume lightest exotic is stable or long-lived)

Higgs from SUSY Cascade

gaugino-higssino-higgs coupling

Boosted Higgs is generic

Gori, Schwaller and Wagner (2011)

higgs-squark-squark

Gunion et al(1987); Baer, Bisset, Tata & Woodside(1992); Denegri, Majerotto and Rurua, CMS-NOTE-1997-094; S. Abdullin et al. (CMS Collaboration) (2002); I. Hinchliffe et al. (ATLAS Collaboration) (1997); Datta, Djouadi, Guchait and Moortgat (2004); Kribs, Martin, Roy and Spannowsky (2009, 2010)

Test our approach

Two MSSM spectra: large mu/ small mu

• Force $h \rightarrow 2\eta \rightarrow 4j$

• Higgs signal 0.8pb 0.1pb Pt>300GeV 40% 50% model 2 model 1 2TeV $ilde{g}, ilde{q}$ ~1TeV 1TeV $\tilde{\chi}_3, \tilde{\chi}_4$ $ilde{\chi}_4$ 500 625 $ilde{\chi}_2$ $\tilde{\chi}_3$ 306 306 $ilde{\chi}_1$

163

~150

Analysis path

- Inclusive productions: gluinos/squarks -> cascade decay
 - Signals: h + jets + MET
 - Generic from cascade decays: multi-bosons(w/z/h) + jets + MET
- SUSY cuts: at least 3 jets, leading two jets PT>(180,110)GeV, (HT,MET) > (500,200)GeV
- Jet analysis --> identify Higgs jets (BDRS + additional cuts)
- Consider $m_{\eta} \in [5-30] \; \mathrm{GeV} \quad m_h \in [90-120] \; \mathrm{GeV}$

Light η (~10GeV)

- η reconstructed automatically from the clustering
- Higgs jet selected and reconstructed from BDRS
- Additional kinematical cut -- η is scalar
 - cut on extra subjet

$$\beta_{\text{flow}} \equiv \frac{p_{T,j3}}{p_{T,j1} + p_{T,j2}}, \text{ if } p_{T,j3} > p_T^{min}.$$

cut on the subjet mass

$$\alpha_{\text{MD}} \equiv \frac{\min(m_{j1}, m_{j2})}{\max(m_{j1}, m_{j2})}$$

W/Z ----

Result

- Jet mass distribution of all reconstructed jets --> Two resonances: W & Higgs
- BDRS + other kinematical cuts (cut 75% on W/Z, but 30% on Higgs)
- Estimate of discovery with 10/fb. Caveats: SUSY background model dependent

 model 1

Jet Mass $n_h = 120, m_{\eta} = 10 \, \mathrm{GeV}$ $n_{\eta} = 10 \, \mathrm{GeV}$

Heavier η (~30GeV)

- Larger angle for the partons from η decay --> four final partons more equally distributed
- Four-prong final state is itself hard to mimic
- Require 3 or 4 subjets after reclustering --> enough to reduce QCD jets as well as W/Z jets
- We take R(subjet) = 0.25, N(subjet)>3 with pt>15GeV

Result

- Clean resonance!
- Low mass candidates suppressed and no W/Z peaks
- Efficiency is lower and the more data is needed --> ~10-30/fb

Conclusions

- Search the light jet final states maybe the right way to find Higgs
- It's difficult in the conventional way and with SM productions
- Maybe the presence of BSM new particles are the cure
- A new resonance give a hint of Higgs, but confirm it require other channels
- Discovery the light pseudo-scalar also very important, measure the decay branching ratio of Higgs?
- More work needs to be done before Higgs is being discovered

Backup Slides

Model	1	2
$m_{ ilde{q}_{L,R}}$	940,910	1000
$ig m_{ ilde{\ell}}$	1000	1000
$ig m_{ ilde{g}}$	949	2036
$m_{\chi_1^0}$	163	138
$m_{\chi^0_2}$	306	-158
$m_{\chi^0_3}$	-518	306
$m_{\chi_4^0}$	535	625
$m_{\chi_1^{\pm}}$	305	148
$m_{\chi_2^{\pm}}$	534	625
$\tan \beta$	10	10
μ	512	150

$\sigma(ilde{g}, ilde{q})$	2.5 pb	0.41 pb
$ \mathrm{BR}(ilde{q}_L o h) $	30%	$oxed{22\%}$
$ \mathrm{BR}(ilde{q}_L o Z) $	3%	25%
$ \operatorname{BR}(\tilde{q}_L \to W) $	64%	48%
$\sigma \cdot \mathrm{BR}(h)$	0.29 pb	$\left 0.04~\mathrm{pb}\right $
$\sigma \cdot \mathrm{BR}(h+W/Z)$	0.47 pb	$\mid 0.1 \text{ pb} \mid$
$\sigma \cdot \mathrm{BR}(W/Z)$	1.04 pb	$\left 0.23~\mathrm{pb}\right $

Simulation details

- Event generation (Pythia 6.4) with ISR/FSR, MPI
- Normal jet -- use C/A with R=0.5 (fastjet)
- SUSY signal cut (similar to CMS)
 - N(jet)> 2, pt(j1,j2)>180,110GeV
 - HT>500 GeV, MET > 200 GeV

m_h, m_η	(120, 10)	(100, 10)	(120, 30)	(100, 30)
R	1.2	1.2	1.0	0.9
μ	0.667	0.667	0.667	0.5
$lpha_{ m MD}$	> 0.7	> 0.8	> 0.4	> 0.4
$eta_{ m flow}$	< 2%	< 0.5%	-	-
$p_T^{ m min}$	2.0	1.0	-	-
R_{sub}	-	-	0.25	0.25
$n_{ m subjet}$	-	-	≥ 4	≥ 4
$p_{T,\mathrm{sub}}^{\mathrm{min}}$	-	_	15	17